Catalog # MP3401

MuRF1 (C-terminal region) Antibody

Rabbit Polyclonal

Application / Dilution
ELISA1:2000
ICC1:300
WB1:1000

Size 100 μl

Species Reactivity Hu, Rt, Ms

MW 38 kDa

$329


DATASHEET  

Muscle proteolysis is regulated by the ATP-dependent ubiquitin–proteasome system. This system involves ubiquitination of specific proteins, leading to recognition and degradation by the 26S proteasome complex. Ubiquitination requires interactions with ubiquitin related proteins, ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-ligating enzymes (E3) known as ligases. Two muscle specific ubiquitin ligases have been identified, muscle ring finger 1 (MuRF-1) and Atrogin 1. Both ligases are regulated by the Akt1/FOXO1 signaling pathway, and both proteins have been shown to be upregulated prior to the onset of atrophy in multiple models of muscle wasting, including disuse and cachexia. MuRF1 is also known as TRIM63, SMRZ, and RNF28, and its expression is upregulated after TNFα treatment in C2C12 cells and muscle tissue, while localization of MuRF1 protein has been observed in the cytoplasm and nucleus of cells.

 

References

Leger, B. et al. (2006) J Physiol. 576(3):923.
Bodine, S.C. (2001) Science. 294(5547):1704.
Dai, K.S. & Liews, C.C. (2001) J Biol. Chem. 276(26):23992.

Western blot analysis of mouse heart tissue (lanes 1 & 3) or C2C12 cells (lanes 2 & 4). The blot was probed with anti-MuRF1 (C-terminal region) (lanes 1 & 2) or anti-Atrogin-1 (lanes 3 & 4).

Immunocytochemical labeling of MuRF1 in mouse C2C12 cells. The cells were labeled with rabbit polyclonal MuRF1 antibody, then detected using appropriate secondary antibody conjugated to Cy3. The antibody was used in the absence (left) or presence (right) of blocking peptide (MX3405).



MuRF1 (C-terminal) synthetic peptide (coupled to KLH) corresponding to amino acid residues in the C-terminal half of human MuRF1. This peptide sequence is highly conserved in rat and mouse MuRF1, and has 50% homology to MuRF2 (TRIM-55).

*For more information, see UniProt Accession Q969Q1
Rabbit polyclonal, affinity-purified antibody is supplied in 100μl phosphate-buffered saline, 50% glycerol, 1 mg/ml BSA, and 0.05% sodium azide. Store at –20°C. Stable for 1 year.

The products are are safely shipped at ambient temperature for both domestic and international shipments. Each product is guaranteed to match the specifications as indicated on the corresponding technical data sheet. Please store at -20C upon arrival for long term storage.

This antibody was affinity purified using MuRF1 (C-terminal region) peptide (without carrier). The antibody detects 38 and 30 kDa* proteins corresponding to the apparent molecular mass of MuRF1 isoforms on SDS-PAGE immunoblots of mouse C2C12 cells, and detects a 38 kDa band in mouse heart and muscle tissue.

*All molecular weights (MW) are confirmed by comparison to Bio-Rad Rainbow Markers and to western blot mobilities of known proteins with similar MW.

Product References:

Zhang, Y. et al. (2017) Evid Based Comp Altern Med. 6268378. (IHC: mouse gastrocnemius)
Riaz, M. et al. (2016) PLoS Genet. May; 12(5): e1006031. (WB: mouse myotubes)
Abrigo, J. et al. (2016) Cell Signal. 28(5):366. (WB: mouse C2C12 cells)
Marino, F.E. et al. (2015) JCSM.12031 (WB: mouse gastrocnemius)
Wagatsuma, A. et al. (2016) Mol Cell Biochem. 412(1-2):59 (WB: rat gastrocnemius muscle)
Kang, C. et al. (2015) FASEB J. 29(10): 4092. (WB: mouse skeletal muscle)
Gwag, T. et al. (2015) J phys & pharm 66(2): 273. (WB: rat L6 myotube)
Jaitovich, A. et al. (2015) J Biol Chem. 290(14):9183 (WB: C2C12 myotubes)
Rahbek, SK et al. (2015) Amino Acids. 47(4):767. (WB: human muscle)
Mastro, L.M. et al. (2015) Domest Anim Endocrinol. 50:14. (WB: horse gluteus medius muscle)
Sakai, H. et al. (2014) Toxicol Appl Pharmacol. (2):190. (WB: mouse muscle)
Smith, IJ et al. (2014) FASEB J. 28(7):2790. (WB: rat diaphragm)
Stefanetti, R. et al (2014) Front in phys 5(30):doi 10.3389 (WB: human muscle)
Ostler, J. et al. (2014) Am J Phys Endo Metab. 306(6): E592. (WB: rat gastrocnemius and skeletal muscle)
Franchi, M.V. et al. (2014) Acta Physiol (Oxf). 210(3):642. (WB: human vastus lateralis muscle)
Langenberg, D. et al. (2013) J Chrons Colitis. [Epub] (WB: humah skeletal muscle)
Kang, J. et al. (2014) FEBS Lett. 588(1):79. (WB: mouse skeletal muscle)
Kang, C. et al. (2013) Jou. of App. Phys. 115(11): 1618. (WB: mouse tibialis anterior)
Pond, A.L. et al. (2014) Muscle Nerve. 49(3): 378 (WB: mouse gastrocnemius)
Peterle, E. et al. (2013) J Neurol. 260(8):2033. (WB: human skeletal muscle)
Dong, Y. et al. (2013) PLoS One 8(3): e58554 (WB: mouse muscle)
Fanin, M. et al. (2013) Neuropathol Appl Neurobiol Epup ahead of print (WB: human skeletal muscle )
Gunderman, D. et al. (2012) J Appl Physiol 43(24):1334. (WB: human skeletal muscle)
Orellana, R. et al (2012) AJP Reg Int Comp Phys. 302(6):682. (WB: Pig skeletal muscle LPS treated)
Vanderplanck, C. et al. (2011) PLoS One 6(10):e26820. (IFS: human myoblasts and TE671 rhabdomyosarcoma)
Sanchez, A. et al. (2012) J Cell Biochem 113(2):695. (WB: mouse primary myotubes)
Gilliam, L. et al. (2012) AJP Cell Physiol 302:195. (WB: C2C12 myotubes)
Finlin, B.S. et al. (2012) J Nutr Biochem. 23(8):885. (WB: human myotubes)
Anvar, S.Y. et al. (2011) Skeletal Muscle. 1:15. (ICC: C2C12 myotubes)
Hain, B.A. et al. (2011) AJP Reg Int Comp Phys. 300(3):R595. (WB: rat muscle)

This kit contains: